- Skeletons provide
 - body support,
 - movement by working with muscles, and
 - protection of internal organs.
- There are three main types of animal skeletons:
 - hydrostatic skeletons,
 - exoskeletons, and
 - endoskeletons.

1. Hydrostatic skeletons are

- fluid held under pressure in a closed body compartment
- found in worms and chidarians.
- Hydrostatic skeletons
 - help protect other body parts by cushioning them from shocks,
 - give the body shape, and
 - provide support for muscle action.

2. Exoskeletons are rigid external skeletons that consist of

- chitin and protein in arthropods and
- calcium carbonate shells in molluscs.

Exoskeletons must be shed to permit growth.

- 3. Endoskeletons consist of hard or leathery supporting elements situated among the soft tissues of an animal. They may be made of
 - cartilage or cartilage and bone (vertebrates),
 - spicules (sponges), or
 - hard plates (echinoderms).

30.3 EVOLUTION CONNECTION: Vertebrate skeletons are variations on an ancient theme

- The vertebrate skeletal system provides
 - structural support
 - means of locomotion

Bones of the Human Body

- The adult skeleton has 206 bones
- Two basic types of bone tissue
 - Compact bone
 - Homogeneous
 - Spongy bone
 - Small needle-like pieces of bone
 - Many open spaces

Classification of Bones

- Bones are classified by shape
- Long bones
 - Typically longer than they are wide
 - Shaft with heads situated at both ends
 - Contain mostly compact bone
 - All of the bones of the limbs (except wrist, ankle, and kneecap bones)

Example:

- Femur
- Humerus

Types of Bone Cells

- Osteocytes—mature bone cells
- Osteoblasts—bone-forming cells
- Osteoclasts—giant bone-destroying cells

- Bone cells
 - live in a matrix of flexible protein fibers and hard calcium salts and
 - are kept alive by blood vessels, hormones, and nerves.

Anatomy of a Long Bone

- Epiphyseal plate
 - •Flat plate of hyaline cartilage seen in young, growing bone
- Epiphyseal line
 - Remnant of the epiphyseal plate
 - Seen in adult bones

30.3 EVOLUTION CONNECTION: Vertebrate skeletons are variations on an ancient theme

The human skeleton consists of an

axial skeleton

- that supports the axis or trunk of the body and
- consists of the skull, vertebrae, and ribs and

appendicular skeleton

- that includes the appendages and the bones that anchor the appendage and
- consists of the arms, legs, shoulders, and pelvic girdles.

(b) Posterior view

30.4 Bones are complex living organs

- Cartilage at the ends of bones
 - cushions joints and
 - reduces friction of movements.

30.4 Bones are complex living organs

Long bones have

- a central cavity storing fatty yellow bone marrow
- spongy bone located at the ends of bones containing red bone marrow, that produces blood cells.

30.5 CONNECTION: Healthy bones resist stress and heal from injuries

Osteoporosis is

- a bone disease,
- characterized by low bone mass and structural deterioration, and
- less likely if a person
 - has high levels of calcium in the diet,
 - exercises regularly, and
 - does not smoke.

30.6 Joints permit different types of movement

- Joints allow limited movement of bones.
- Different joints permit various movements.
 - Ball-and-socket joints enable rotation in the arms and legs.
 - Hinge joints in the elbows and knees permit movement in a single plane.
 - Pivot joints enable the rotation of the forearm at the elbow.

30.7 The skeleton and muscles interact in movement

- Muscles and bones interact to produce movement.
- Muscles
 - are connected to bones by tendons
 - can only contract, requiring an antagonistic muscle to reverse the action
 - Example: Flexion of forearm biceps brachii, extension of forearm – triceps brachii

Flexion

Extension

30.8 Each muscle cell has its own contractile apparatus

- Muscle fibers (skeletal muscle cells) are cells that consist of bundles of myofibrils
 - are cylindrical,
 - have many nuclei, and
 - are oriented parallel to each other.
- Myofibrils contain sacromeres
 - thick filaments composed primarily of the protein myosin
 - thin filaments composed primarily of the protein actin.

Sarcomeres are

- repeating groups of overlapping thick and thin filaments
- the contractile unit—the fundamental unit of muscle action.

30.9 A muscle contracts when thin filaments slide along thick filaments

- According to the sliding-filament model of muscle contraction, a sarcomere contracts (shortens) when its thin filaments slide across its thick filaments.
 - Contraction shortens the sarcomere without changing the lengths of the thick and thin filaments.
 - When the muscle is fully contracted, the thin filaments overlap in the middle of the sarcomere.

The active site on actin is exposed as Ca²⁺ binds troponin.

The myosin head forms a cross-bridge with actin.

During the power stroke, the myosin head bends, and ADP and phosphate are released.

A new molecule of ATP attaches to the myosin head, causing the cross-bridge to detach.

ATP hydrolyzes to ADP and phosphate, which returns the myosin to the "cocked" position.

30.10 Motor neurons stimulate muscle contraction

A motor neuron

carries an action potential to a muscle cell,

releases the neurotransmitter acetvlcholine (Ach) from

its synaptic terminal, and

initiates a muscle contraction.

30.10 Motor neurons stimulate muscle contraction

- A motor unit consists of
 - a neuron and
 - the set of muscle fibers it controls.
- More forceful muscle contractions result when additional motor units are activated.

